Rural Road Extraction from High-Resolution Remote Sensing Images Based on Geometric Feature Inference

نویسندگان

  • Jian Liu
  • Qiming Qin
  • Jun Li
  • Yunpeng Li
چکیده

Road information as a type of basic geographic information is very important for services such as city planning and traffic navigation, as such there is an urgent need for updating road information in a timely manner. Scholars have proposed various methods of extracting roads from remote sensing images, but most of them are not applicable to rural roads with diverse materials, large curvature changes, and a severe shelter problem. In view of these problems, we propose a road extraction method based on geometric feature inference. In this method, we make full use of the linear characteristics of roads, and construct a geometric knowledge base of rural roads using information on selected sample road segments. Based on the knowledge base, we identify the parallel line pairs in images, and further conduct grouping and connection instructed by knowledge reasoning, and finally obtain complete rural roads. The case study in Xiangtan City of China’s Hunan Province validates the performance of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Road Extraction from High Resolution Remote Sensing Images based on Multi-features and Multi-stages

Road extraction from high resolution remote sensing imagery is very important for many applications such as GIS data updating, transportation management and city planning. In this paper we propose a semi-automatic multi-stage method to extract roads from high resolution remote sensing imagery based on multi-features. The proposed method contains two main steps, i.e. segmenting original image wi...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Segmentation Improvement of High Resolution Remote Sensing Images based on superpixels using Edge-based SLIC algorithm (E-SLIC)

The segmentation of high resolution remote sensing images is one of the most important analyses that play a significant role in the maximal and exact extraction of information.  There are different types of segmentation methods among which using  superpixels is one of the most important ones. Several methods have been proposed for extracting superpixels. Among the most successful ones, we can r...

متن کامل

A New Method for Urban Road Extraction based on High Resolution Remote Sensing Images

An efficient method to extract urban road based on the side trees from a high resolution remote sensing image is proposed. First, the high resolution remote sensing image was preprocessed so as to improve the extraction accuracy and reduce the difficulty of later treatment. Second, according to the reflective property of side trees and urban road, it is necessary to detect the side trees region...

متن کامل

Automatic Extraction of Roads from High Resolution Aerial and Satellite Images with Heavy Noise

Aerial and satellite images are information rich. They are also complex to analyze. For GIS systems, many features require fast and reliable extraction of roads and intersections. In this paper, we study efficient and reliable automatic extraction algorithms to address some difficult issues that are commonly seen in high resolution aerial and satellite images, nonetheless not well addressed in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017